A Linear Bound for Frobenius Powers and an Inclusion Bound for Tight Closure

نویسنده

  • HOLGER BRENNER
چکیده

Let I denote an R+-primary homogeneous ideal in a normal standard-graded Cohen-Macaulay domain over a field of positive characteristic p. We give a linear degree bound for the Frobenius powers I [q] of I, q = p, in terms of the minimal slope of the top-dimensional syzygy bundle on the projective variety ProjR. This provides an inclusion bound for tight closure. In the same manner we give a linear bound for the Castelnuovo-Mumford regularity of the Frobenius powers I . Mathematical Subject Classification (2000): 13A35; 13D02; 14J60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic Bounds for Frobenius Closure and Tight Closure

We use geometric and cohomological methods to show that given a degree bound for membership in ideals of a fixed degree type in the polynomial ring P = k[x1, . . . , xd], one obtains a good generic degree bound for membership in the tight closure of an ideal of that degree type in any standard-graded k-algebra R of dimension d. This indicates that the tight closure of an ideal behaves more unif...

متن کامل

Computations with Frobenius Powers

It is an open question whether tight closure commutes with localization in quotients of a polynomial ring in finitely many variables over a field. Katzman [K] showed that tight closure of ideals in these rings commutes with localization at one element if for all ideals I and J in a polynomial ring there is a linear upper bound in q on the degree in the least variable of reduced Gröbner bases in...

متن کامل

A bound for Feichtinger conjecture

In this paper‎, ‎using the discrete Fourier transform in the finite-dimensional Hilbert space C^n‎, ‎a class of nonRieszable equal norm tight frames is introduced ‎and‎ using this class, a bound for Fiechtinger Conjecture is presented. By the Fiechtinger Conjecture that has been proved recently, for given A,C>0 there exists a universal constant delta>0 independent of $n$ such that every C-equal...

متن کامل

An upper bound for the regularity of powers of edge ideals

‎A recent result due to Ha and Van Tuyl proved that the Castelnuovo-Mumford regularity of the quotient ring $R/I(G)$ is at most matching number of $G$‎, ‎denoted by match$(G)$‎. ‎In this paper‎, ‎we provide a generalization of this result for powers of edge ideals‎. ‎More precisely‎, ‎we show that for every graph $G$ and every $sgeq 1$‎, ‎$${rm reg}( R‎/ ‎I(G)^{s})leq (2s-1) |E(G)|^{s-1} {rm ma...

متن کامل

Socle Degrees, Resolutions, and Frobenius Powers

We first describe a situation in which every graded Betti number in the tail of the resolution of R J may be read from the socle degrees of R J . Then we apply the above result to the ideals J and J [q]; and thereby describe a situation in which the graded Betti numbers in the tail of the resolution of R/J [q] are equal to the graded Betti numbers in the tail of a shift of the resolution of R/J...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008